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Volatility Estimation Problem

Assume the diffusion process u(¢) follows
du(t)=u(t)dt+o(1)dw,

Task: Given return time series u(t), (<t<T,
estimate the instantaneous volatility o(z)
for )<t<T.



Literature Review

Approximation by the integrated volatility:
Zhang et al. (2005) use quadratic variation.

Fourier Series Representation: Malliavin and
Mancino(2002, 2009) propose a Fourier

transform method

These two methods are nonparametric!



Fourier Transform Method - |

Compute the Fourier coefficients of du by

1 27
a, (du)=z 0 a’u(t),

a, (du)= % [ cos (ki)du(s),

b, (du) = % ["sin (k) du(1).

Then, |
A sin (?)

u(t)=a0+; = p kk : |




Fourier Transform Method - Il

. . . 2
Fourier coefficients of variance O (f),

N-k

(0" )= lim T 3 [a (du)a, (du) B (du) ., ()]
s=—N
N-k

b (0°)= lim > [a; (du)b., (du)~ B (). ()],
s==N

where 1, is any positive integer so that

N

oy (t)= ; [ak ((72 )cos (kt)+a, (02 )sin (kt)].




Fourier Transform Method - Il

Reconstruct the time series variance 0 (f)
Finally, o7 (¢) is an approximation of o’ (t) as
N approaches infinity, which can be given by
classical Fourier-Fejer inversion formula.

o’ (t)= ;1v1£n o2 (¢) in prob.




Smoothing

]lvlir;;w (Sk ak cos kt)+b ( )sin(kt)],

sin’ (x) _

where @(x)=—— is a smooth function and
. X
0 isasmoothing parameter.

Reno (2008) alerts the boundary effect in the
Fourier transform method.



A Price Correction Scheme:

First Order

ldea: (Nonlinear) Least Squares Method for
first-order correction

I =008,

=~ eXP ((a + bﬁ )/2 )@et.

Then by MLE to regress out @ and b

2

ln(i) =a+bY +In¢’.

{




Simulation Study — Local Volatility
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Oil Price & Volatility
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Stochastic Volatility Model

du(t)=u(t)dt+o()dW.

o(?)=f(,)
dY =a(m-Y,)dt+pdZ,

Note that the model estimation is NO
a standard filtering problem.
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Stochastic Volatility Estimation

Methods: Overview

Broto and Ruiz (2004) : method of moments,
generalized method of moments, maximum likelihood
estimators, quasi maximum likelihood, etc.

Yu (2010) - simulation-based estimation

methods: simulated maximum likelihood, simulated

generalized method of moments, efficient method of
moments, indirect inference, Markov chain Monte Carlo,

etc.



A New Approach: Corrected Fourier

Method with MLE

Once the volatility process o) =/, is
estimated, one can use the state-space
method or MLE for stochastic volatility
model estimation.

For Example, assuming that the driving
volatility process is governed by the
Ornstein-Uhlenbeck process,

dY =a(m-Y )dt+BdW.
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Likelihood Function

For a given set of observations (¥,,%.....Yy )
the likelihood function is

L(oc,[g’,m)=lﬁ1[\/Z;Wexp{—zﬁlm[YH1 —(amAt +(1—aAt)Yt )]2},

where A, denotes the length of discretized
time interval.
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ML Estimators
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Simulation Study - Stochastic Vol

Let the stochastic volatility model is
dS, = uS,dt+exp(Y/2)S,dW,,
dY =a(m-Y )dt+ BdW,.

<

Set model parameters as follows:
uw=0.01,§,=50,Y,=-2,m=-2, =5, p =1,
with the discretization length A,=1/5000

Then we generate volatility series 0, = exp(¥,/2)
and asset price series §, .
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Simulation Study(cont.)

Two criteria are used for performance

comparison: Mean squared errors (MSE) and
Maximum absolute errors (MAE).

Comparison results are shown below:

Mean squared error 0.0324 0.0025

Maximum absolute error 0.3504 0.1563
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Up to now...

Develop a corrected Fourier transform
method for volatility estimation

Combine this method with MLE for stochastic
volatility model estimation

Next, we discuss some practical applications
in risk management
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Value at Risk

Let l”(f) be an asset return at time t. Its ax100%
VaR, denoted by VaR  , is defined by the

(1-0)x100%

percentile of V(f).

That is,

P(V(t)s VaRa)=1—05
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Aspects about Risk Measure

Mathematically, it is not a coherent risk
measure* because it doesn't satisfy the risk
diversification principal. Instead, CVaR does!

Practically, VaR is commonly required by
financial regulations (since Basel II Accord).

* Artzner P, F. Delbaen, J.-M. Eber, and D. Heath (1999).
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Estimation of VaR

Riskmetrics: normal assumption under
EWMA model.

Historical Simulation: generate scenarios

Model Dependent Approach: Discrete-Time
Model vs. Continuous-Time Model
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Estimate Extreme Probability

Given a Markovian dynamic model of an asset
price S, , its return process is 7; =In(S, /S, )

Given a loss threshold D, the extreme
probability is defined by

P(0,5,;D)=E[1(r; <D)IS,].

Note: solve VaR, from P(0,5,;VaR,)=1-a.
CV0R=E[VT\’” <VaR,]. (Expected Shortfall)
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Importance Sampling for Scaled
Stochastic Volatility Model

By an averaging property, we develop an
efficient importance sampling method for

VaR estimation.

CVaR can also be easily estimated.
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VaR/CVaR Estimation: S&P 500

Data sample period: 2005.01.03-2009.07.24
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Stress Test and Backtesting

— S&P 5oo
Data sample period: 2005.01.03-2009.07.24

Historical Simulation

Significance 1% Significance 5%
LRuc Reject VaR Model LRuc Reject VaR Model
LRind Reject VaR Model LRind Don't Reject VaR Model
LRcc Reject VaR Model LRcc Reject VaR Model
RiskMetrics
Significance 1% Significance 5%
LRuc Reject VaR Model LRuc Reject VaR Model
LRind Don't Reject VaR Model LRind Don't Reject VaR Model
LRcc Reject VaR Model LRcc Reject VaR Model
GARCH(1,1)
Significance 1% Significance 5%
LRuc Reject VaR Model LRuc Reject VaR Model
LRind Don't Reject VaR Model LRind Reject VaR Model
LRcc Reject VaR Model LRcc Reject VaR Model
SV
Significance 1% Significance 5%
LRuc Don't Reject VaR Model LRuc Reject VaR Model
LRind Don't Reject VaR Model LRind Don't Reject VaR Model
LRcc Don't Reject VaR Model LRcc Reject VaR Model ]




Backtesting Outcomes of JPY/USD

VaR Estimate

Data sample period: 1998.01.05-2009.07.24

Historical Simulation

Significance 1% Significance 5%
LRuc Don't Reject VaR Model LRuc Don't Reject VaR Model
LRind Don't Reject VaR Model LRind Reject VaR Model
LRcc Don't Reject VaR Model LRcc Reject VaR Model
RiskMetrics
Significance 1% Significance 5%
LRuc Reject VaR Model LRuc Don't Reject VaR Model
LRind Don't Reject VaR Model LRind Reject VaR Model
LRcc Reject VaR Model LRcc Reject VaR Model
GARCH(1,1)
Significance 1% Significance 5%
LRuc Reject VaR Model LRuc Don't Reject VaR Model
LRind Don't Reject VaR Model LRind Reject VaR Model
LRce Reject VaR Model LRcc Don't Reject VaR Model
SV
Significance 1% Significance 5%
LRuc Don't Reject VaR Model LRuc Don't Reject VaR Model
LRind Don't Reject VaR Model LRind Don't Reject VaR Model
LRcc Don't Reject VaR Model LRcc Don't Reject VaR Model Q




Conclusion

Bias Reduction - remedy volatility boundary
deficit of Fourier transform method by a price
correction scheme

Variance Reduction - efficient importance
sampling to estimate VaR/CVaR under
Stochastic Volatility models.

Backtesting - VaR backtesting for FX and
equity data, SV model outperforms.
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Thank You for Your Patient!
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