波動率估計及其應用

-以地球科學為例

韓傳祥 Chuan-Hsiang Han

清華大學計量財務金融學系 Quantitative Finance, NTHU

時頻分析與地球科學研討會 2010

Outline

- Volatility Estimation: Corrected Fourier
 Transform Method
- Local and Stochastic Volatility Estimation
- Risk Management: Value at Risk (VaR) / Conditional Value at Risk (CVaR)
- Stress Test and Backtesting for VaR
 Estimation

Volatility Estimation Problem

- Assume the diffusion process u(t) follows

$$du(t) = \mu(t)dt + \sigma(t)dW_t,$$

■ Task: Given return time series u(t), $0 \le t \le T$, estimate the instantaneous volatility $\sigma(t)$ for $0 \le t \le T$.

Literature Review

- Approximation by the integrated volatility:
 Zhang et al. (2005) use quadratic variation.
- Fourier Series Representation: Malliavin and Mancino(2002, 2009) propose a Fourier transform method
- These two methods are nonparametric!

Fourier Transform Method - I

Compute the Fourier coefficients of du by

$$a_{0}(du) = \frac{1}{2\pi} \int_{0}^{2\pi} du(t),$$

$$a_{k}(du) = \frac{1}{\pi} \int_{0}^{2\pi} \cos(kt) du(t),$$

$$b_{k}(du) = \frac{1}{\pi} \int_{0}^{2\pi} \sin(kt) du(t).$$

Then,

$$u(t) = a_0 + \sum_{k=1}^{\infty} \left[-\frac{b_k(du)}{k} \cos(kt) + \frac{a_k(du)}{k} \sin(kt) \right].$$

Fourier Transform Method - II

• Fourier coefficients of variance $\sigma^2(t)$,

$$a_{k}\left(\sigma^{2}\right) = \lim_{N \to \infty} \frac{\pi}{2N+1} \sum_{s=-N}^{N-k} \left[a_{s}^{*} \left(du\right) a_{s+k}^{*} \left(du\right) + b_{s}^{*} \left(du\right) b_{s+k}^{*} \left(du\right) \right],$$

$$b_{k}\left(\sigma^{2}\right) = \lim_{N \to \infty} \frac{\pi}{2N+1} \sum_{s=-N}^{N-k} \left[a_{s}^{*} \left(du\right) b_{s+k}^{*} \left(du\right) - b_{s}^{*} \left(du\right) a_{s+k}^{*} \left(du\right) \right],$$

where n_0 is any positive integer so that

$$\sigma_N^2(t) = \sum_{k=0}^N \left[a_k \left(\sigma^2 \right) \cos(kt) + a_k \left(\sigma^2 \right) \sin(kt) \right].$$

Fourier Transform Method - III

- Reconstruct the time series variance $\sigma^2(t)$.
- Finally, $\sigma_N^2(t)$ is an approximation of $\sigma^2(t)$ as N approaches infinity, which can be given by classical Fourier-Fejer inversion formula.

$$\sigma^2(t) = \lim_{N \to \infty} \sigma_N^2(t)$$
 in prob.

Smoothing

$$\sigma^{2}(t) = \lim_{N \to \infty} \sum_{k=0}^{N} \varphi(\delta k) \left[a_{k} \left(\sigma^{2} \right) \cos(kt) + b_{k} \left(\sigma^{2} \right) \sin(kt) \right],$$

where $\varphi(x) = \frac{\sin^2(x)}{x^2}$ is a smooth function and δ is a smoothing parameter.

 Reno (2008) alerts the boundary effect in the Fourier transform method.

A Price Correction Scheme: First Order

Idea: (Nonlinear) Least Squares Method for first-order correction

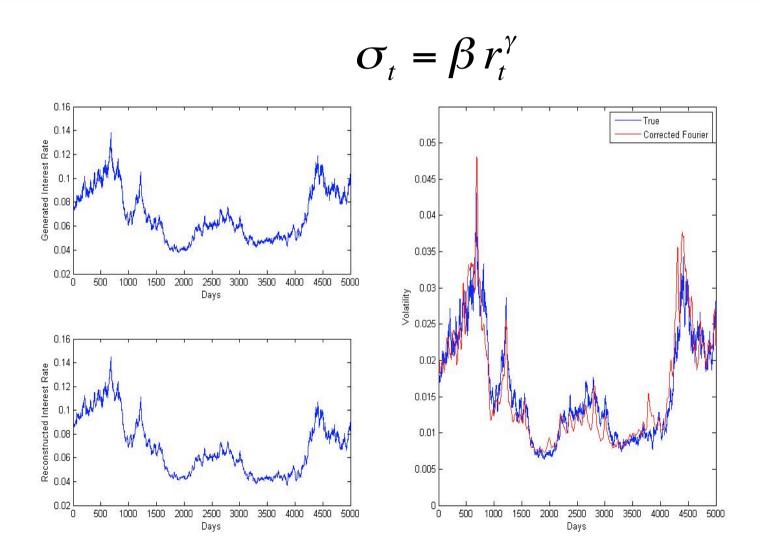
$$r_t \approx \sigma_t \delta_t \varepsilon_t$$

$$\approx \exp\left(\left(a + b\hat{Y}_t\right)/2\right) \delta_t \varepsilon_t.$$

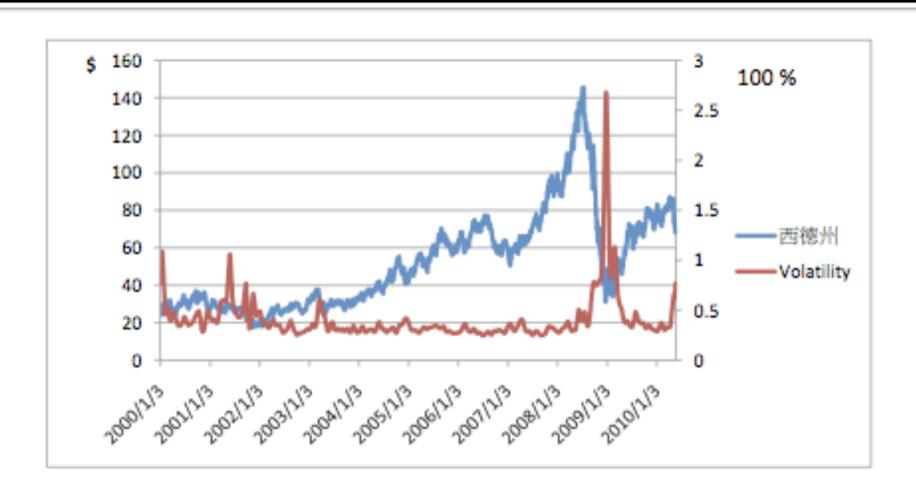
Then by MLE to regress out a and b

$$\ln\left(\frac{r_t}{\delta_t}\right)^2 = a + b\hat{Y}_t + \ln\varepsilon_t^2.$$

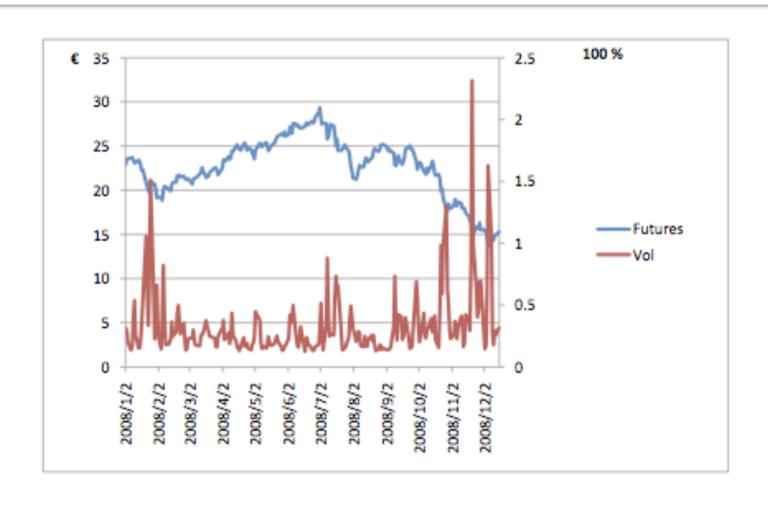
Simulation Study – Local Volatility



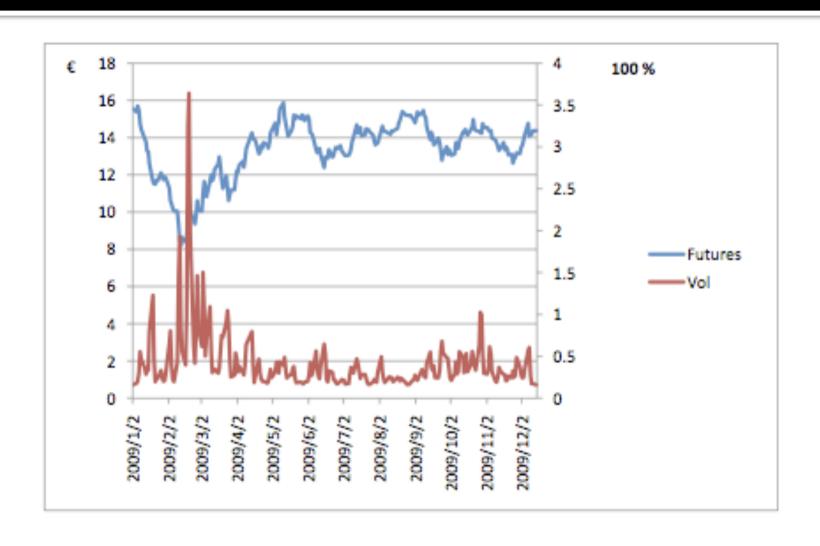
Oil Price & Volatility



Carbon Futures Price & Vol – I



Carbon Futures Price & Vol – II



Stochastic Volatility Model

$$d u(t) = \mu(t) dt + \sigma(t) dW_{t}$$

$$\sigma(t) = f(Y_{t})$$

$$dY_{t} = \alpha (m - Y_{t}) dt + \beta dZ_{t}$$

 Note that the model estimation is NOT a standard filtering problem.

Stochastic Volatility Estimation Methods: Overview

- Broto and Ruiz (2004): method of moments, generalized method of moments, maximum likelihood estimators, quasi maximum likelihood, etc.
- Yu (2010) simulation-based estimation methods: simulated maximum likelihood, simulated generalized method of moments, efficient method of moments, indirect inference, Markov chain Monte Carlo, etc.

A New Approach: Corrected Fourier Method with MLE

- Once the volatility process $\sigma(t) = f(Y_t)$ is estimated, one can use the state-space method or MLE for stochastic volatility model estimation.
- For Example, assuming that the driving volatility process is governed by the Ornstein-Uhlenbeck process,

$$dY_{t} = \alpha \left(m - Y_{t} \right) dt + \beta dW_{t}.$$

Likelihood Function

For a given set of observations $(Y_1, Y_2, ..., Y_N)$ the likelihood function is

$$L(\alpha,\beta,m) = \prod_{t=1}^{N} \frac{1}{\sqrt{2\pi\beta^2\Delta_t}} \exp\left\{-\frac{1}{2\beta^2\Delta_t} \left[Y_{t+1} - (\alpha m\Delta_t + (1-\alpha\Delta_t)Y_t)\right]^2\right\},\,$$

where Δ_i denotes the length of discretized time interval.

ML Estimators

$$\hat{\alpha} = \frac{1}{\Delta_{t}} \left[1 - \frac{\left(\sum_{t=2}^{N} Y_{t}\right) \left(\sum_{t=1}^{N-1} Y_{t}\right) - (N-1) \left(\sum_{t=1}^{N-1} Y_{t}Y_{t+1}\right)}{\left(\sum_{t=1}^{N-1} Y_{t}\right)^{2} - (N-1) \left(\sum_{t=1}^{N-1} Y_{t}^{2}\right)} \right],$$

$$\hat{\beta} = \sqrt{\frac{1}{N\Delta_{t}}} \sum_{t=1}^{N-1} \left[Y_{t+1} - \left(\alpha m \Delta_{t} + (1 - \alpha \Delta_{t}) Y_{t}\right) \right]^{2},$$

$$\hat{m} = \frac{-1}{\hat{\alpha}\Delta_{t}} \left[\frac{\left(\sum_{t=2}^{N} Y_{t}\right) \left(\sum_{t=1}^{N-1} Y_{t}^{2}\right) - \left(\sum_{t=1}^{N-1} Y_{t}\right) \left(\sum_{t=1}^{N-1} Y_{t}Y_{t+1}\right)}{\left(\sum_{t=1}^{N-1} Y_{t}\right)^{2} - (N-1) \left(\sum_{t=1}^{N-1} Y_{t}^{2}\right)},$$

Simulation Study – Stochastic Vol

Let the stochastic volatility model is

$$\begin{cases} dS_t = \mu S_t dt + \exp(Y_t/2) S_t dW_{1t}, \\ dY_t = \alpha (m-Y_t) dt + \beta dW_{2t}. \end{cases}$$

Set model parameters as follows:

$$\mu$$
 = 0.01, S_0 = 50, Y_0 = -2, m = -2, α =5, β = 1, with the discretization length $\Delta_{\rm t}$ =1/5000

Then we generate volatility series $\sigma_t = \exp(Y_t/2)$ and asset price series S_t .

Simulation Study(cont.)

- Two criteria are used for performance comparison: Mean squared errors (MSE) and Maximum absolute errors (MAE).
- Comparison results are shown below:

	Fourier method	Corrected Fourier method
Mean squared error	0.0324	0.0025
Maximum absolute error	0.3504	0.1563

Up to now...

- Develop a corrected Fourier transform method for volatility estimation
- Combine this method with MLE for stochastic volatility model estimation
- Next, we discuss some practical applications in risk management

Value at Risk

Let r(t) be an asset return at time t. Its $\alpha \times 100\%$ VaR, denoted by VaR_{α} , is defined by the $(1-\alpha)\times 100\%$ percentile of r(t). That is,

$$P(r(t) \le VaR_{\alpha}) = 1 - \alpha$$

Aspects about Risk Measure

- Mathematically, it is not a coherent risk measure* because it doesn't satisfy the risk diversification principal. Instead, CVaR does!
- * Artzner P., F. Delbaen, J.-M. Eber, and D. Heath (1999).

Estimation of VaR

- Riskmetrics: normal assumption under EWMA model.
- Historical Simulation: generate scenarios
- Model Dependent Approach: Discrete-Time Model vs. Continuous-Time Model

Estimate Extreme Probability

- Given a Markovian dynamic model of an asset price S_t , its return process is $r_T = \ln(S_T/S_0)$.
- Given a loss threshold $\,D\,$, the extreme probability is defined by

$$P(0, S_0; D) = E[I(r_T \le D)|S_0].$$

Note: solve VaR_{α} from $P(0,S_0;VaR_{\alpha})=1-\alpha$.

CVaR = $E[r_T | r_T \le VaR_\alpha]$. (Expected Shortfall)

Importance Sampling for Scaled Stochastic Volatility Model

• E.g.
$$\alpha = \frac{1}{\varepsilon}, \beta = \sqrt{\frac{2v}{\varepsilon}}$$
.

- By an averaging property, we develop an efficient importance sampling method for VaR estimation.
- CVaR can also be easily estimated.

VaR/CVaR Estimation: S&P 500

Data sample period: 2005.01.03-2009.07.24



Stress Test and Backtesting - S&P 500

Data sample period: 2005.01.03-2009.07.24

	Historic	al Simulation	
Significance	1%	Significance	5%
LRuc	Reject VaR Model	LRuc	Reject VaR Model
LRind	Reject VaR Model	LRind	Don't Reject VaR Model
LRcc	Reject VaR Model	LRcc	Reject VaR Model
	Ris	kMetrics	
Significance	1%	Significance	5%
LRuc	Reject VaR Model	LRuc	Reject VaR Model
LRind	Don't Reject VaR Model	LRind	Don't Reject VaR Model
LRcc	Reject VaR Model	LRcc	Reject VaR Model
•	GA	RCH(1,1)	
Significance	1%	Significance	5%
LRuc	Reject VaR Model	LRuc	Reject VaR Model
LRind	Don't Reject VaR Model	LRind	Reject VaR Model
LRcc	Reject VaR Model	LRcc	Reject VaR Model
·		SV	
Significance	1%	Significance	5%
LRuc	Don't Reject VaR Model	LRuc	Reject VaR Model
LRind	Don't Reject VaR Model	LRind	Don't Reject VaR Model
LRcc	Don't Reject VaR Model	LRcc	Reject VaR Model

Backtesting Outcomes of JPY/USD VaR Estimate

Data sample period: 1998.01.05-2009.07.24

	Historica	al Simulation	
Significance	1%	Significance	5%
LRuc	Don't Reject VaR Model	LRuc	Don't Reject VaR Model
LRind	Don't Reject VaR Model	LRind	Reject VaR Model
LRcc	Don't Reject VaR Model	LRcc	Reject VaR Model
	Risl	Metrics	
Significance	1%	Significance	5%
LRuc	Reject VaR Model	LRuc	Don't Reject VaR Model
LRind	Don't Reject VaR Model	LRind	Reject VaR Model
LRcc	Reject VaR Model	LRcc	Reject VaR Model
•	GAF	RCH(1,1)	
Significance	1%	Significance	5%
LRuc	Reject VaR Model	LRuc	Don't Reject VaR Model
LRind	Don't Reject VaR Model	LRind	Reject VaR Model
LRcc	Reject VaR Model	LRcc	Don't Reject VaR Model
<u> </u>		SV	
Significance	1%	Significance	5%
LRuc	Don't Reject VaR Model	LRuc	Don't Reject VaR Model
LRind	Don't Reject VaR Model	LRind	Don't Reject VaR Model
LRcc	Don't Reject VaR Model	LRcc	Don't Reject VaR Model

Conclusion

- Bias Reduction remedy volatility boundary deficit of Fourier transform method by a price correction scheme
- Variance Reduction efficient importance sampling to estimate VaR/CVaR under Stochastic Volatility models.
- Backtesting VaR backtesting for FX and equity data, SV model outperforms.

References:

- Artzner, P., Delbaen, F., Eber, J.-M. and Heath, D., 1999. Coherent measures of risk. Mathematical Finance, 9, 203-28.
- Broto, Carmen, and Ruiz, E., 2004. Estimation methods for stochastic volatility models: A survey. Journal of Economic Surveys 18(5), 613-649.
- Han, C.-H., Liu, W.-H., and Chen, T.-Y., An Improved Procedure for VaR/ CVaR Estimation under Stochastic Volatility Models, Submitted.
- Malliavin, P., and Mancino, M. E., 2002. Fourier series method for measurement of multivariate volatilities. Finance and Stochastics. 6, 49-61.
- Malliavin, P. and Mancino, M. E., 2009. A Fourier transform method for nonparametric estimation of multivariate volatility. Annals of Statistics. 37(4), 1983-2010.
- Reno, R., 2008. Nonparametric estimation of the diffusion coefficient of stochastic volatility models. Econometric Theory. 24(5), 1174-1206
- Yu, Jun., 2010. Simulation-based Estimation Methods for Financial Time Series Models. In Handbook of Computational Finance, edited by J.-C. Duan, J. E. Gentle and W. Hardle: Springer-Verlag.
- Zhang, L., Mykland, P., 2005. A tale of two time scales: Determining integrated volatility with noise high frequency data. Journal of American Statistics, 100, 1394-1411.

Thank You for Your Patient!